
Discussion Of: \The use of the 
ow length concept to assess the e�ciency of air entrainment

with regards to frost durability: Part I - Description of the test method," by Richard Pleau

and Michel Pigeon.

By: Ken Snyder

Corrigenda

On page 24, Eqn. 29 should read

p(S) =
@Fs

@S
= 4�MS

2
e
�4�MS

3
=3 (1)

On page 25, the authors' expression in Eqn. 35 is, by de�nition, unity. Eqn. 35 for the

cumulative density function should be

K
0(Q) =

Z
Q

�1

k
0(Q0) dQ0 (2)

The integration variable must di�er from the cumulative density function parameter.

Introduction

In an approach similar to that of Philleo (Philleo 1955), the authors have attempted to

calculate the distribution of distances between random points in the paste and the nearest

air void surface (paste-void proximity distribution). This approach has a distinct advantage

over single parameter spacing equations (Powers 1949, Attiogbe 1993) that cannot charac-

terize a distribution of spacings. However, like the Philleo equation, the authors' equation

1



for the paste-void proximity distribution is an approximation, and is only exact for zero air

content. This Discussion will demonstrate this point conclusively for monodispersed spheres.

Additionally, by comparing results of a similar numerical experiment published previously to

predictions based upon the authors' equation, it can be demonstrated that the authors' equa-

tion contains considerable error at a concrete air content of 5% for a zeroth-order logarithmic

distribution of sphere diameters.

Sphere Centers as a Poisson Process

The approach used by the authors is based upon the assumption that the location of the

sphere centers follow a Poisson process. However, they do not acknowledge this fact as such,

\The probability that this point is located at a distance smaller or equal to S from the center

of the nearest air void, noted p(S), is given by the following equation (Philleo 1983)

p(S) = 4�MS
2
e
�4�MS3=3 (3)

where M represents the number of voids per unit volume." In the limiting case when the

air voids have zero radius the location of the centers do follow a Poisson process; however,

once the air voids have a �nite radius, this assumption fails because the placement of an

individual sphere depends upon the placement of all the other spheres, since the spheres may

not overlap.

The authors continue by using a convolution integral of the spacing between air void

centers and the distribution of sphere radii (or, equivalently, the sphere diameters). Given
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that the probability density for the distance from a randomly chosen point in the system

to the nearest sphere center follows the distribution g(x), and that the sphere radii follow

the probability density function f(r), the probability density of being a distance s from the

nearest edge of a sphere is

k
0(s) =

Z
1

0
g(s+ r)f(r) dr (4)

The authors, lacking a true value for g(x) used the reasonable, but incorrect, approximation

given in Eqn. 3 above.

The errors induced by this approach can be demonstrated using a monodispersed sphere

radii distribution. Let the monosized sphere radius distribution be represented by a Dirac

delta function (Lighthill 1958):

f(r) = �(r � ro) (5)

Using this radius distribution, and the de�nition of a delta function,

k
0(Q) = 4�M

Z
1

0
(Q + r)2 e�4�M(Q+r)3=3

�(r � ro) dr

= 4�M(Q + ro)
2
e
�4�M(Q+ro)

3=3 (6)

This leads to the simple relation for the cumulative density function

K
0(Q) =

Z
Q

�ro

4�M(Q0 + ro)
2
e
�4�M(Q0+ro)

3
=3
dQ

0

= 1� e
�4�M(Q+ro)

3=3 (7)

For the probability density function k0(Q), the authors state, \The area under the curve for

Q < 0 thus simply corresponds to the air content of the paste fraction Ap." However, in this
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example for monosized spheres, the area under k0(Q < 0) is equal to K 0(Q = 0):

K
0(Q = 0) = 1� e

�
4

3
�Mr

3
o (8)

which is the expected air content for overlapping spheres. The true air content is simply

Ap =
4

3
�Mr

3
o

(9)

However, in the limit of small air content one can use a Taylor expansion of the exponential

function,

K
0(Q = 0)j
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= 1� (1�

4

3
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3
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(10)

and the relationship holds, to �rst order in Ap. Therefore, the equation derived by the

authors is only exact in the limit of zero air content. For �nite air contents, their equation

is only an approximation. The air content in the authors' numerical experiment was 5% by

total volume. In a system composed of 30% paste, as in the authors' system, the paste air

content would be 16%, which is signi�cant.

Theoretical vs. True Values

As a demonstration of the authors' method, they perform a numerical example using a

computer to simulate the air void system and to measure circle diameters and chord lengths

on a plane surface through the system. The culmination of the experiment is a table of data

comparing the predicted results from circle and chord measurements to theoretical values.
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The theoretical values shown for air content, A, speci�c surface, �, Powers spacing factor, �L,

and number density of spheres, Mp, are the true values. However, as argued in the previous

section, the values given for Q50 and Q98 are only approximations.

A previous numerical experiment (Snyder et al. 1994) used a computer that tabulated the

true cumulative density function K(Q). In order to use this computer program to calculate

the true values for the authors' experiment, the parameters of the zeroth-order logarithmic

distribution must be calculated, since the authors did not report them, from the values in

the authors' Table 1 for speci�c surface, air content, and number density of spheres using

the moments of the zeroth-order logarithmic distribution (Espenscheid et al. 1964):

hdmi = d
m

o
exp

"
(m2 + 2m)

�2
o

2

#
(11)

The parameters do (modal diameter) and �o (standard deviation of the logarithms) can be

calculated from the following two relations:

A =
�

6
Mphd

3i = 0:05 � =
�hd2i
�

6
hd3i

= 200 cm�1 (12)

For a system in which the unit volume is a cube one centimeter on a side, the solution of

these two equations gives

do = 0:003254 �o = 0:7966 (13)

A modal diameter of 32.54 �m is in contrast to the curve shown in the authors' Fig. 9

(\Size-distribution of the air voids used for the numerical example") which suggests a modal

diameter near 100 �m. This discrepancy would cast doubt upon the results of a direct
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comparison between the results from the authors' numerical example to the true results

calculated by computer.

Comparison to Previous Results

As mentioned above, a numerical experiment similar to the authors' has been performed

previously (Snyder et al. 1994). Spheres with diameters following a zeroth-order logarithmic

distribution were randomly parked in a �xed volume and both the distances from random

points in the paste to the nearest air void surface (paste-void proximity distribution) and

the distances between nearest neighbor spheres (void-void proximity distribution) were mea-

sured in the system. The results were compared to the predictions of Powers (Powers 1955),

Philleo (Philleo 1983), and Attiogbe (Attiogbe 1993). A zeroth-order logarithmic distribu-

tion of spheres was used with the parameters do = 30�m, and �o = 0:736; the resulting

distribution had a speci�c surface area of 300 cm2/cm3. An abbreviated listing of these

results is summarized here in Table 1. The quantity n is the number of spheres per unit

volume, �L is the Powers spacing factor, F50 and F95 are Philleo factors for the 50-th and 95-

th percentile of the paste-void proximity distribution, and pv50 and pv95 are the measured

50-th and 95-th percentiles of the paste-void proximity distribution of the system, represent-

ing the true values. These values are expressed along with a 95% con�dence interval. Note

that the air content given (expressed as a fraction) represents the air content of the air-paste

system; the corresponding concrete air contents (assuming 30% paste, as the authors have)

would be 0.48, 1.9, and 5.9% for three number densities reported in the table.
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This model system was then analyzed using the authors' equation which estimates the

spacing distribution from points exterior to the spheres. This distribution, k(Q), renormal-

izes k0(Q) to account for the volume of the system outside the spheres:

k(Q) =
k0(Q)

1� Ap

(14)

Here, two di�erent analyses are performed. Since Ap does not equal K 0(Q = 0) for the

authors' equation, both 1�K 0(Q = 0) and 1�Ap were used to normalize the portion of the

distribution k0(Q) for Q > 0. The results of both analyses are given in Table 2. As expected,

the authors' equation is fairly accurate for the very low air content. However, in the system

with a concrete air content of about 5%, the authors' estimate is in error by a considerable

percentage for both normalization factors. What is even more surprising is that, although

the authors' estimate is more accurate than Philleo's for low air contents, it is less accurate

at higher air contents. This is signi�cant because the Philleo approach does not require

knowledge of the distribution of sphere diameters. Rather, Philleo's equation only requires

the number density of spheres, as does the authors' equation.

A qualitative comparison between the authors' estimate and the true paste proximity

spacing distribution is also reported. The computer program measured the paste-void prox-

imity cumulative density function, which was numerically di�erentiated and shown in Fig. 1

for the two number densities of 20000 and 240000 per cubic centimeter, corresponding to 1.6

and 19.7% air by volume of paste. As expected, the authors' approximation is a reasonably

accurate estimate of the paste-void proximity distribution at low air content, but far less

accurate at higher air contents.
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n Air �L F50 F95 pv50 pv95

( cm�3) (cm) (cm) (cm) (cm) (cm)

20000 0.016 0.0450 0.0146 0.0272 0.0163�.0001 0.0291�.0003

80000 0.066 0.0247 0.0073 0.0150 0.0085�.0001 0.0161�.0002

240000 0.197 0.0136 0.0037 0.0087 0.0042�.0001 0.0089�.0001

Table 1: A partial list of results from a previous numerical experiment. The results are

expressed in both number density of spheres, n, and paste air content, A. The quantities �L,

F50 and F95 are the Powers spacing factor, and the Philleo spacing at the 50-th and 95-th

percentile, respectively. The 50-th and 95-th percentile of the measured paste-void proximity

distribution are labeled pv50 and pv95, respectively, along with the 95% con�dence interval.

(Snyder et al. 1994)
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[1� Ap] [1�K 0(Q = 0)]

n Air K 0(Q = 0) K50 K95 K50 K95 pv50 pv95

( cm�3) (cm) (cm) (cm) (cm) (cm) (cm)

20000 0.016 0.012 0.0172 0.0302 0.0173 0.0304 0.0163�.0001 0.0291�.0003

80000 0.066 0.039 0.0098 0.0173 0.0100 0.0185 0.0085�.0001 0.0161�.0002

240000 0.197 0.082 0.0058 0.0099 0.0063 0.0123 0.0042�.0001 0.0089�.0001

Table 2: Comparison of the authors' predictions for the 50-th and 95-th percentiles of the

paste-void proximity distribution (K50 and K95) and the measured true values (pv50 and

pv95) expressed along with the 95% con�dence interval. The authors' equation for the

distribution k0(Q) was normalized two ways: the quantity [1� Ap] (as suggested by the

authors) and the quantity [1�K 0(Q = 0)].
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Figure 1: Comparison of the measured paste-void spacing distribution (�lled circles) and the

equation proposed by the authors (solid line) for two number densities of spheres, 20000 and

2400000, corresponding to paste air contents of 1.6% and 19.7%, respectively.
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